Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cancers ; 15(5), 2023.
Article in English | EuropePMC | ID: covidwho-2271088

ABSTRACT

Simple Summary There are contradictory data about coronavirus disease (COVID-19) in patients with hematological malignancies. In this population-based study we evaluated severity and survival of unvaccinated patients with hematological malignancies (HM) and COVID-19 in the Madrid region, Spain, between early February 2020 and February 2021. Also, a comparison was made with non-cancer patients from the SEMI-COVID registry and post COVID-19 conditions were evaluated. Overall, 30-day mortality was 32.7%, with higher mortality among certain groups of patients (aged ≥ 60 years, presence of ≥ 3 comorbidities, diagnosis of AML/ALL, treatment with conventional chemotherapy within 30 days of COVID-19 diagnosis, recipients of systemic corticosteroids as COVID-19 therapy). Mortality rates were similar between earlier and later phases of the pandemic, not paralleling the reduction of mortality in non-cancer patients. Up to 27.3% patients had a post COVID-19 condition. These findings will be useful to understand COVID-19 morbidity and mortality in unvaccinated patients diagnosed with HM. Abstract Mortality rates for COVID-19 have declined over time in the general population, but data in patients with hematologic malignancies are contradictory. We identified independent prognostic factors for COVID-19 severity and survival in unvaccinated patients with hematologic malignancies, compared mortality rates over time and versus non-cancer inpatients, and investigated post COVID-19 condition. Data were analyzed from 1166 consecutive, eligible patients with hematologic malignancies from the population-based HEMATO-MADRID registry, Spain, with COVID-19 prior to vaccination roll-out, stratified into early (February–June 2020;n = 769 (66%)) and later (July 2020–February 2021;n = 397 (34%)) cohorts. Propensity-score matched non-cancer patients were identified from the SEMI-COVID registry. A lower proportion of patients were hospitalized in the later waves (54.2%) compared to the earlier (88.6%), OR 0.15, 95%CI 0.11–0.20. The proportion of hospitalized patients admitted to the ICU was higher in the later cohort (103/215, 47.9%) compared with the early cohort (170/681, 25.0%, 2.77;2.01–3.82). The reduced 30-day mortality between early and later cohorts of non-cancer inpatients (29.6% vs. 12.6%, OR 0.34;0.22–0.53) was not paralleled in inpatients with hematologic malignancies (32.3% vs. 34.8%, OR 1.12;0.81–1.5). Among evaluable patients, 27.3% had post COVID-19 condition. These findings will help inform evidence-based preventive and therapeutic strategies for patients with hematologic malignancies and COVID-19 diagnosis.

2.
Cancers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2271089

ABSTRACT

Mortality rates for COVID-19 have declined over time in the general population, but data in patients with hematologic malignancies are contradictory. We identified independent prognostic factors for COVID-19 severity and survival in unvaccinated patients with hematologic malignancies, compared mortality rates over time and versus non-cancer inpatients, and investigated post COVID-19 condition. Data were analyzed from 1166 consecutive, eligible patients with hematologic malignancies from the population-based HEMATO-MADRID registry, Spain, with COVID-19 prior to vaccination roll-out, stratified into early (February-June 2020; n = 769 (66%)) and later (July 2020-February 2021; n = 397 (34%)) cohorts. Propensity-score matched non-cancer patients were identified from the SEMI-COVID registry. A lower proportion of patients were hospitalized in the later waves (54.2%) compared to the earlier (88.6%), OR 0.15, 95%CI 0.11-0.20. The proportion of hospitalized patients admitted to the ICU was higher in the later cohort (103/215, 47.9%) compared with the early cohort (170/681, 25.0%, 2.77; 2.01-3.82). The reduced 30-day mortality between early and later cohorts of non-cancer inpatients (29.6% vs. 12.6%, OR 0.34; 0.22-0.53) was not paralleled in inpatients with hematologic malignancies (32.3% vs. 34.8%, OR 1.12; 0.81-1.5). Among evaluable patients, 27.3% had post COVID-19 condition. These findings will help inform evidence-based preventive and therapeutic strategies for patients with hematologic malignancies and COVID-19 diagnosis.

3.
Intern Emerg Med ; 18(3): 907-915, 2023 04.
Article in English | MEDLINE | ID: covidwho-2209513

ABSTRACT

The significant impact of COVID-19 worldwide has made it necessary to develop tools to identify patients at high risk of severe disease and death. This work aims to validate the RIM Score-COVID in the SEMI-COVID-19 Registry. The RIM Score-COVID is a simple nomogram with high predictive capacity for in-hospital death due to COVID-19 designed using clinical and analytical parameters of patients diagnosed in the first wave of the pandemic. The nomogram uses five variables measured on arrival to the emergency department (ED): age, sex, oxygen saturation, C-reactive protein level, and neutrophil-to-platelet ratio. Validation was performed in the Spanish SEMI-COVID-19 Registry, which included consecutive patients hospitalized with confirmed COVID-19 in Spain. The cohort was divided into three time periods: T1 from February 1 to June 10, 2020 (first wave), T2 from June 11 to December 31, 2020 (second wave, pre-vaccination period), and T3 from January 1 to December 5, 2021 (vaccination period). The model's accuracy in predicting in-hospital COVID-19 mortality was assessed using the area under the receiver operating characteristics curve (AUROC). Clinical and laboratory data from 22,566 patients were analyzed: 15,976 (70.7%) from T1, 4,233 (18.7%) from T2, and 2,357 from T3 (10.4%). AUROC of the RIM Score-COVID in the entire SEMI-COVID-19 Registry was 0.823 (95%CI 0.819-0.827) and was 0.834 (95%CI 0.830-0.839) in T1, 0.792 (95%CI 0.781-0.803) in T2, and 0.799 (95%CI 0.785-0.813) in T3. The RIM Score-COVID is a simple, easy-to-use method for predicting in-hospital COVID-19 mortality that uses parameters measured in most EDs. This tool showed good predictive ability in successive disease waves.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Hospital Mortality , Emergency Service, Hospital , ROC Curve , Registries , Retrospective Studies
4.
J Clin Med ; 11(16)2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-2023791

ABSTRACT

BACKGROUND: Pulmonary congestion (PC) is associated with an increased risk of hospitalization and death in patients with heart failure (HF). Lung ultrasound is highly sensitive for detecting PC. The aim of this study is to evaluate whether lung ultrasound-guided therapy improves 6-month outcomes in patients with HF. METHODS: A randomized, multicenter, single-blind clinical trial in patients discharged after hospitalization for decompensated HF. Participants were assigned 1:1 to receive treatment guided according to the presence of lung ultrasound signs of congestion (semi-quantitative evaluation of B lines and the presence of pleural effusion) versus standard of care (SOC). The primary endpoint was the combination of cardiovascular death, readmission, or emergency department or day hospital visit due to worsening HF at 6 months. In September 2020, after an interim analysis, patient recruitment was stopped. RESULTS: A total of 79 patients were randomized (mean age 81.2 +/- 9 years) and 41 patients (51.8%) showed a left ventricular ejection fraction >50%. The primary endpoint occurred in 11 patients (29.7%) in the SOC group and in 11 patients (26.1%) in the LUS group (log-rank = 0.83). Regarding nonserious adverse events, no significant differences were found. CONCLUSIONS: LUS-guided diuretic therapy after hospital discharge due to ADHF did not show any benefit in survival or a need for intravenous diuretics compared with SOC.

5.
J Clin Med ; 11(15)2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1994097

ABSTRACT

INTRODUCTION: Heart failure is an extremely prevalent disease in the elderly population of the world. Most patients present signs and symptoms of decompensation of the disease due to worsening congestion. This congestion has been clinically assessed through clinical signs and symptoms and complementary imaging tests, such as chest radiography. Recently, pulmonary and inferior vena cava ultrasound has been shown to be useful in assessing congestion but its prognostic significance in elderly patients has been less well evaluated. OBJECTIVES: This study aims to compare the clinical and radiological characteristics and predictive values for mortality in patients admitted for heart failure through the determination of B lines by lung ultrasound and the degree of collapsibility of the inferior vena cava (IVC). Secondarily, the study aims to assess the prediction of 30-day mortality based on the diameter of the IVC by means of the ROC curve. METHODS: This is an observational cohort study based on data collected in the PROFUND-IC study, a nationwide multicentric registry of patients admitted with decompensated heart failure. Data were collected from these patients between October 2020 and April 2022. RESULTS: A total of 482 patients were entered into the PROFUND-IC registry between October 2020 and April 2022. Bedside clinical ultrasound was performed during admission in 301 patients (64.3%). The number of patients with more than 6 B-lines on lung ultrasound amounted to 194 (66%). Statistically significant differences in 30-day mortality (22.1% vs. 9.2%; p = 0.01) were found in these patients. The sum of patients with IVC collapsibility of less than 50% amounted to 195 (67%). Regarding prognostic value, collapsibility data were significant for the number of admissions in the last year (12.5% vs. 5.5%; p = 0.04), in-hospital mortality (10.1% vs. 3.3%, p = 0.04) and 30-day mortality (22.6% vs. 8.1%; p < 0.01), but not for readmissions. Regarding the prognostic value of IVC diameter for 30-day mortality, the area under the ROC curve (AUC) was 0.73, with a p < 0.01. The curve cut-off point with the highest sensitivity (70%) and specificity (70.3%) was for an IVC value of 22.5 mm. In the logistic regression analysis, we observed that the variable most associated with patient survival at 30 days was the presence of a collapsible inferior vena cava, with more than 50% OR 0.359 (CI 0.139-0.926; p = 0.034). CONCLUSIONS: The subgroups of patients analyzed with more than six B lines per field and IVC collapsibility less than or equal to 50%, as measured by clinical ultrasound, had higher 30-day mortality rates than patients who did not fall into these subgroups. IVC diameter may be a good independent predictor of 30-day mortality in patients with decompensated heart failure. Comparing both ultrasound variables, it seems that in our population, the assessment of the inferior vena cava may be more associated with short-term prognosis than the pulmonary congestion variables assessed by B lines.

6.
Elife ; 112022 05 17.
Article in English | MEDLINE | ID: covidwho-1847655

ABSTRACT

New SARS-CoV-2 variants, breakthrough infections, waning immunity, and sub-optimal vaccination rates account for surges of hospitalizations and deaths. There is an urgent need for clinically valuable and generalizable triage tools assisting the allocation of hospital resources, particularly in resource-limited countries. We developed and validate CODOP, a machine learning-based tool for predicting the clinical outcome of hospitalized COVID-19 patients. CODOP was trained, tested and validated with six cohorts encompassing 29223 COVID-19 patients from more than 150 hospitals in Spain, the USA and Latin America during 2020-22. CODOP uses 12 clinical parameters commonly measured at hospital admission for reaching high discriminative ability up to 9 days before clinical resolution (AUROC: 0·90-0·96), it is well calibrated, and it enables an effective dynamic risk stratification during hospitalization. Furthermore, CODOP maintains its predictive ability independently of the virus variant and the vaccination status. To reckon with the fluctuating pressure levels in hospitals during the pandemic, we offer two online CODOP calculators, suited for undertriage or overtriage scenarios, validated with a cohort of patients from 42 hospitals in three Latin American countries (78-100% sensitivity and 89-97% specificity). The performance of CODOP in heterogeneous and geographically disperse patient cohorts and the easiness of use strongly suggest its clinical utility, particularly in resource-limited countries.


While COVID-19 vaccines have saved millions of lives, new variants, waxing immunity, unequal rollout and relaxation of mitigation strategies mean that the pandemic will keep on sending shockwaves across healthcare systems. In this context, it is crucial to equip clinicians with tools to triage COVID-19 patients and forecast who will experience the worst forms of the disease. Prediction models based on artificial intelligence could help in this effort, but the task is not straightforward. Indeed, the pandemic is defined by ever-changing factors which artificial intelligence needs to cope with. To be useful in the clinic, a prediction model should make accurate prediction regardless of hospital location, viral variants or vaccination and immunity statuses. It should also be able to adapt its output to the level of resources available in a hospital at any given time. Finally, these tools need to seamlessly integrate into clinical workflows to not burden clinicians. In response, Klén et al. built CODOP, a freely available prediction algorithm that calculates the death risk of patients hospitalized with COVID-19 (https://gomezvarelalab.em.mpg.de/codop/). This model was designed based on biochemical data from routine blood analyses of COVID-19 patients. Crucially, the dataset included 30,000 individuals from 150 hospitals in Spain, the United States, Honduras, Bolivia and Argentina, sampled between March 2020 and February 2022 and carrying most of the main COVID-19 variants (from the original Wuhan version to Omicron). CODOP can predict the death or survival of hospitalized patients with high accuracy up to nine days before the clinical outcome occurs. These forecasting abilities are preserved independently of vaccination status or viral variant. The next step is to tailor the model to the current pandemic situation, which features increasing numbers of infected people as well as accumulating immune protection in the overall population. Further development will refine CODOP so that the algorithm can detect who will need hospitalisation in the next 24 hours, and who will need admission in intensive care in the next two days. Equipping primary care settings and hospitals with these tools will help to restore previous standards of health care during the upcoming waves of infections, particularly in countries with limited resources.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitalization , Hospitals , Humans , Machine Learning , Retrospective Studies
7.
J Clin Med ; 11(8)2022 Apr 18.
Article in English | MEDLINE | ID: covidwho-1809957

ABSTRACT

Accumulated data show the utility of diagnostic multi-organ point-of-care ultrasound (PoCUS) in the assessment of patients admitted to an internal medicine ward. We assessed whether multi-organ PoCUS (lung, cardiac, and abdomen) provides relevant diagnostic and/or therapeutic information in patients admitted for any reason to an internal medicine ward. We conducted a prospective, observational, and single-center study, at a secondary hospital. Multi-organ PoCUS was performed during the first 24 h of admission. The sonographer had access to the patients' medical history, physical examination, and basic complementary tests performed in the Emergency Department (laboratory, X-ray, electrocardiogram). We considered a relevant ultrasound finding if it implied a significant diagnostic and/or therapeutic change. In the second semester of 2019, we enrolled 310 patients, 48.7% were male and the mean age was 70.5 years. Relevant ultrasound findings were detected in 86 patients (27.7%) and in 60 (19.3%) triggered a therapeutic change. These findings were associated with an older age (Mantel-Haenszel χ2 = 25.6; p < 0.001) and higher degree of dependency (Mantel-Haenszel χ2 = 5.7; p = 0.017). Multi-organ PoCUS provides relevant diagnostic information, complementing traditional physical examination, and facilitates therapy adjustment, regardless of the cause of admission. Multi-organ PoCUS to be useful need to be systematically integrated into the decision-making process in internal medicine.

8.
J Gen Intern Med ; 37(8): 1980-1987, 2022 06.
Article in English | MEDLINE | ID: covidwho-1782931

ABSTRACT

BACKGROUND: The WHO ordinal severity scale has been used to predict mortality and guide trials in COVID-19. However, it has its limitations. OBJECTIVE: The present study aims to compare three classificatory and predictive models: the WHO ordinal severity scale, the model based on inflammation grades, and the hybrid model. DESIGN: Retrospective cohort study with patient data collected and followed up from March 1, 2020, to May 1, 2021, from the nationwide SEMI-COVID-19 Registry. The primary study outcome was in-hospital mortality. As this was a hospital-based study, the patients included corresponded to categories 3 to 7 of the WHO ordinal scale. Categories 6 and 7 were grouped in the same category. KEY RESULTS: A total of 17,225 patients were included in the study. Patients classified as high risk in each of the WHO categories according to the degree of inflammation were as follows: 63.8% vs. 79.9% vs. 90.2% vs. 95.1% (p<0.001). In-hospital mortality for WHO ordinal scale categories 3 to 6/7 was as follows: 0.8% vs. 24.3% vs. 45.3% vs. 34% (p<0.001). In-hospital mortality for the combined categories of ordinal scale 3a to 5b was as follows: 0.4% vs. 1.1% vs. 11.2% vs. 27.5% vs. 35.5% vs. 41.1% (p<0.001). The predictive regression model for in-hospital mortality with our proposed combined ordinal scale reached an AUC=0.871, superior to the two models separately. CONCLUSIONS: The present study proposes a new severity grading scale for COVID-19 hospitalized patients. In our opinion, it is the most informative, representative, and predictive scale in COVID-19 patients to date.


Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , Inflammation/diagnosis , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , World Health Organization
9.
J Clin Med ; 11(7)2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1776257

ABSTRACT

(1) Background: This work aims to analyze clinical outcomes according to ethnic groups in patients hospitalized for COVID-19 in Spain. (2) Methods: This nationwide, retrospective, multicenter, observational study analyzed hospitalized patients with confirmed COVID-19 in 150 Spanish hospitals (SEMI-COVID-19 Registry) from 1 March 2020 to 31 December 2021. Clinical outcomes were assessed according to ethnicity (Latin Americans, Sub-Saharan Africans, Asians, North Africans, Europeans). The outcomes were in-hospital mortality (IHM), intensive care unit (ICU) admission, and the use of invasive mechanical ventilation (IMV). Associations between ethnic groups and clinical outcomes adjusted for patient characteristics and baseline Charlson Comorbidity Index values and wave were evaluated using logistic regression. (3) Results: Of 23,953 patients (median age 69.5 years, 42.9% women), 7.0% were Latin American, 1.2% were North African, 0.5% were Asian, 0.5% were Sub-Saharan African, and 89.7% were European. Ethnic minority patients were significantly younger than European patients (median (IQR) age 49.1 (40.5-58.9) to 57.1 (44.1-67.1) vs. 71.5 (59.5-81.4) years, p < 0.001). The unadjusted IHM was higher in European (21.6%) versus North African (11.4%), Asian (10.9%), Latin American (7.1%), and Sub-Saharan African (3.2%) patients. After further adjustment, the IHM was lower in Sub-Saharan African (OR 0.28 (0.10-0.79), p = 0.017) versus European patients, while ICU admission rates were higher in Latin American and North African versus European patients (OR (95%CI) 1.37 (1.17-1.60), p < 0.001) and (OR (95%CI) 1.74 (1.26-2.41), p < 0.001). Moreover, Latin American patients were 39% more likely than European patients to use IMV (OR (95%CI) 1.43 (1.21-1.71), p < 0.001). (4) Conclusion: The adjusted IHM was similar in all groups except for Sub-Saharan Africans, who had lower IHM. Latin American patients were admitted to the ICU and required IMV more often.

10.
AIDS ; 36(5): 683-690, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1758957

ABSTRACT

OBJECTIVE: To compare coronavirus disease 2019 (COVID-19) hospitalization outcomes between persons with and without HIV. DESIGN: Retrospective observational cohort study in 150 hospitals in Spain. METHODS: Patients admitted from 1 March to 8 October 2020 with COVID-19 diagnosis confirmed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 positive) PCR test in respiratory tract samples. The primary data source was the COVID-19 Sociedad Española de Medicina Interna's registry (SEMI-COVID-19). Demographics, comorbidities, vital signs, laboratory parameters, and clinical severity as well as treatments received during admission, treatment duration, ICU admission, use of invasive mechanical ventilation, and death were recorded. Factors associated with mortality and the composite of ICU admission, invasive mechanical ventilation, and death, were analyzed. RESULTS: Data from 16 563 admissions were collected, 98 (0.59%) of which were of persons with HIV infection. These patients were younger, the percentage of male patients was higher, and their Charlson comorbidity index was also higher. Rates of mortality and composite outcome of ICU admission, invasive mechanical ventilation or death were lower among patients with HIV infection. In the logistic regression analysis, HIV infection was associated with an adjusted odds ratio of 0.53 [95% confidence interval (CI) 0.29-0.96] for the composite outcome. CONCLUSION: HIV infection was associated with a lower probability of ICU admission, invasive mechanical ventilation, or death.


Subject(s)
COVID-19 , HIV Infections , COVID-19/therapy , COVID-19 Testing , HIV Infections/complications , Hospitalization , Humans , Intensive Care Units , Male , Retrospective Studies , SARS-CoV-2 , Spain/epidemiology
11.
PLoS One ; 17(1): e0261711, 2022.
Article in English | MEDLINE | ID: covidwho-1643247

ABSTRACT

OBJECTIVE: To describe the impact of different doses of corticosteroids on the evolution of patients with COVID-19 pneumonia, based on the potential benefit of the non-genomic mechanism of these drugs at higher doses. METHODS: Observational study using data collected from the SEMI-COVID-19 Registry. We evaluated the epidemiological, radiological and analytical scenario between patients treated with megadoses therapy of corticosteroids vs low-dose of corticosteroids and the development of complications. The primary endpoint was all-cause in-hospital mortality according to use of corticosteroids megadoses. RESULTS: Of a total of 14,921 patients, corticosteroids were used in 5,262 (35.3%). Of them, 2,216 (46%) specifically received megadoses. Age was a factor that differed between those who received megadoses therapy versus those who did not in a significant manner (69 years [IQR 59-79] vs 73 years [IQR 61-83]; p < .001). Radiological and analytical findings showed a higher use of megadoses therapy among patients with an interstitial infiltrate and elevated inflammatory markers associated with COVID-19. In the univariate study it appears that steroid use is associated with increased mortality (OR 2.07 95% CI 1.91-2.24 p < .001) and megadose use with increased survival (OR 0.84 95% CI 0.75-0.96, p 0.011), but when adjusting for possible confounding factors, it is observed that the use of megadoses is also associated with higher mortality (OR 1.54, 95% CI 1.32-1.80; p < .001). There is no difference between megadoses and low-dose (p .298). Although, there are differences in the use of megadoses versus low-dose in terms of complications, mainly infectious, with fewer pneumonias and sepsis in the megadoses group (OR 0.82 95% CI 0.71-0.95; p < .001 and OR 0.80 95% CI 0.65-0.97; p < .001) respectively. CONCLUSION: There is no difference in mortality with megadoses versus low-dose, but there is a lower incidence of infectious complications with glucocorticoid megadoses.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19 Drug Treatment , COVID-19/epidemiology , Prednisone/therapeutic use , Registries , SARS-CoV-2/pathogenicity , Sepsis/drug therapy , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/virology , Drug Administration Schedule , Female , Hospital Mortality/trends , Humans , Male , Middle Aged , SARS-CoV-2/growth & development , Sepsis/epidemiology , Sepsis/mortality , Sepsis/virology , Spain/epidemiology , Survival Analysis , Treatment Outcome
12.
Curr Med Res Opin ; 38(4): 501-510, 2022 04.
Article in English | MEDLINE | ID: covidwho-1624967

ABSTRACT

BACKGROUND: The individual influence of a variety of comorbidities on COVID-19 patient outcomes has already been analyzed in previous works in an isolated way. We aim to determine if different associations of diseases influence the outcomes of inpatients with COVID-19. METHODS: Retrospective cohort multicenter study based on clinical practice. Data were taken from the SEMI-COVID-19 Registry, which includes most consecutive patients with confirmed COVID-19 hospitalized and discharged in Spain. Two machine learning algorithms were applied in order to classify comorbidities and patients (Random Forest -RF algorithm, and Gaussian mixed model by clustering -GMM-). The primary endpoint was a composite of either, all-cause death or intensive care unit admission during the period of hospitalization. The sample was randomly divided into training and test sets to determine the most important comorbidities related to the primary endpoint, grow several clusters with these comorbidities based on discriminant analysis and GMM, and compare these clusters. RESULTS: A total of 16,455 inpatients (57.4% women and 42.6% men) were analyzed. According to the RF algorithm, the most important comorbidities were heart failure/atrial fibrillation (HF/AF), vascular diseases, and neurodegenerative diseases. There were six clusters: three included patients who met the primary endpoint (clusters 4, 5, and 6) and three included patients who did not (clusters 1, 2, and 3). Patients with HF/AF, vascular diseases, and neurodegenerative diseases were distributed among clusters 3, 4 and 5. Patients in cluster 5 also had kidney, liver, and acid peptic diseases as well as a chronic obstructive pulmonary disease; it was the cluster with the worst prognosis. CONCLUSION: The interplay of several comorbidities may affect the outcome and complications of inpatients with COVID-19.


Subject(s)
COVID-19 , COVID-19/epidemiology , Comorbidity , Female , Hospitalization , Humans , Machine Learning , Male , Retrospective Studies , Risk Factors , SARS-CoV-2
13.
BMC Infect Dis ; 21(1): 1144, 2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1505642

ABSTRACT

BACKGROUND: Since December 2019, the COVID-19 pandemic has changed the concept of medicine. This work aims to analyze the use of antibiotics in patients admitted to the hospital due to SARS-CoV-2 infection. METHODS: This work analyzes the use and effectiveness of antibiotics in hospitalized patients with COVID-19 based on data from the SEMI-COVID-19 registry, an initiative to generate knowledge about this disease using data from electronic medical records. Our primary endpoint was all-cause in-hospital mortality according to antibiotic use. The secondary endpoint was the effect of macrolides on mortality. RESULTS: Of 13,932 patients, antibiotics were used in 12,238. The overall death rate was 20.7% and higher among those taking antibiotics (87.8%). Higher mortality was observed with use of all antibiotics (OR 1.40, 95% CI 1.21-1.62; p < .001) except macrolides, which had a higher survival rate (OR 0.70, 95% CI 0.64-0.76; p < .001). The decision to start antibiotics was influenced by presence of increased inflammatory markers and any kind of infiltrate on an x-ray. Patients receiving antibiotics required respiratory support and were transferred to intensive care units more often. CONCLUSIONS: Bacterial co-infection was uncommon among COVID-19 patients, yet use of antibiotics was high. There is insufficient evidence to support widespread use of empiric antibiotics in these patients. Most may not require empiric treatment and if they do, there is promising evidence regarding azithromycin as a potential COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Anti-Bacterial Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2
14.
J Gen Intern Med ; 37(1): 168-175, 2022 01.
Article in English | MEDLINE | ID: covidwho-1474092

ABSTRACT

BACKGROUND: The inflammatory cascade is the main cause of death in COVID-19 patients. Corticosteroids (CS) and tocilizumab (TCZ) are available to treat this escalation but which patients to administer it remains undefined. OBJECTIVE: We aimed to evaluate the efficacy of immunosuppressive/anti-inflammatory therapy in COVID-19, based on the degree of inflammation. DESIGN: A retrospective cohort study with data on patients collected and followed up from March 1st, 2020, to May 1st, 2021, from the nationwide Spanish SEMI-COVID-19 Registry. Patients under treatment with CS vs. those under CS plus TCZ were compared. Effectiveness was explored in 3 risk categories (low, intermediate, high) based on lymphocyte count, C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, and D-dimer values. PATIENTS: A total of 21,962 patients were included in the Registry by May 2021. Of these, 5940 met the inclusion criteria for the present study (5332 were treated with CS and 608 with CS plus TCZ). MAIN MEASURES: The primary outcome of the study was in-hospital mortality. Secondary outcomes were the composite variable of in-hospital mortality, requirement for high-flow nasal cannula (HFNC), non-invasive mechanical ventilation (NIMV), invasive mechanical ventilation (IMV), or intensive care unit (ICU) admission. KEY RESULTS: A total of 5940 met the inclusion criteria for the present study (5332 were treated with CS and 608 with CS plus TCZ). No significant differences were observed in either the low/intermediate-risk category (1.5% vs. 7.4%, p=0.175) or the high-risk category (23.1% vs. 20%, p=0.223) after propensity score matching. A statistically significant lower mortality was observed in the very high-risk category (31.9% vs. 23.9%, p=0.049). CONCLUSIONS: The prescription of CS alone or in combination with TCZ should be based on the degrees of inflammation and reserve the CS plus TCZ combination for patients at high and especially very high risk.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Biomarkers , Humans , Inflammation , Retrospective Studies , SARS-CoV-2
15.
J Clin Med ; 10(19)2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1463726

ABSTRACT

OBJECTIVES: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. MATERIAL AND METHODS: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID-19 Registry from March to November 2020. RESULTS: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236-996) µg/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) µg/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation

16.
Clin Microbiol Infect ; 27(12): 1838-1844, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1309204

ABSTRACT

OBJECTIVES: We aimed to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of critical outcomes. METHODS: We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized for COVID-19 from 132 centres in Spain (23rd March to 21st May 2020). For the development cohort, tertiary referral hospitals were selected, while the validation cohort included smaller hospitals. The primary outcome was a composite of in-hospital death, mechanical ventilation, or admission to intensive care unit. Clinical signs and symptoms, demographics, and medical history ascertained at presentation were screened using least absolute shrinkage and selection operator, and logistic regression was used to construct the predictive model. RESULTS: There were 10 433 patients, 7850 in the development cohort (primary outcome 25.1%, 1967/7850) and 2583 in the validation cohort (outcome 27.0%, 698/2583). The PRIORITY model included: age, dependency, cardiovascular disease, chronic kidney disease, dyspnoea, tachypnoea, confusion, systolic blood pressure, and SpO2 ≤93% or oxygen requirement. The model showed high discrimination for critical illness in both the development (C-statistic 0.823; 95% confidence interval (CI) 0.813, 0.834) and validation (C-statistic 0.794; 95%CI 0.775, 0.813) cohorts. A freely available web-based calculator was developed based on this model (https://www.evidencio.com/models/show/2344). CONCLUSIONS: The PRIORITY model, based on easily obtained clinical information, had good discrimination and generalizability for identifying COVID-19 patients at risk of critical outcomes.


Subject(s)
COVID-19 , Critical Illness , COVID-19/diagnosis , Hospital Mortality , Hospitalization , Humans , Models, Theoretical , Retrospective Studies , Risk Assessment , Spain
17.
J Clin Med ; 10(12)2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1270067

ABSTRACT

Our main aim was to describe the effect on the severity of ACEI (angiotensin-converting enzyme inhibitor) and ARB (angiotensin II receptor blocker) during COVID-19 hospitalization. A retrospective, observational, multicenter study evaluating hospitalized patients with COVID-19 treated with ACEI/ARB. The primary endpoint was the incidence of the composite outcome of prognosis (IMV (invasive mechanical ventilation), NIMV (non-invasive mechanical ventilation), ICU admission (intensive care unit), and/or all-cause mortality). We evaluated both outcomes in patients whose treatment with ACEI/ARB was continued or withdrawn. Between February and June 2020, 11,205 patients were included, mean age 67 years (SD = 16.3) and 43.1% female; 2162 patients received ACEI/ARB treatment. ACEI/ARB treatment showed lower all-cause mortality (p < 0.0001). Hypertensive patients in the ACEI/ARB group had better results in IMV, ICU admission, and the composite outcome of prognosis (p < 0.0001 for all). No differences were found in the incidence of major adverse cardiovascular events. Patients previously treated with ACEI/ARB continuing treatment during hospitalization had a lower incidence of the composite outcome of prognosis than those whose treatment was withdrawn (RR 0.67, 95%CI 0.63-0.76). ARB was associated with better survival than ACEI (HR 0.77, 95%CI 0.62-0.96). ACEI/ARB treatment during COVID-19 hospitalization was associated with protection on mortality. The benefits were greater in hypertensive, those who continued treatment, and those taking ARB.

18.
J Clin Med ; 10(10)2021 May 20.
Article in English | MEDLINE | ID: covidwho-1244045

ABSTRACT

(1) Background: The inflammation or cytokine storm that accompanies COVID-19 marks the prognosis. This study aimed to identify three risk categories based on inflammatory parameters on admission. (2) Methods: Retrospective cohort study of patients diagnosed with COVID-19, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish SEMI-COVID-19 Registry. The three categories of low, intermediate, and high risk were determined by taking into consideration the terciles of the total lymphocyte count and the values of C-reactive protein, lactate dehydrogenase, ferritin, and D-dimer taken at the time of admission. (3) Results: A total of 17,122 patients were included in the study. The high-risk group was older (57.9 vs. 64.2 vs. 70.4 years; p < 0.001) and predominantly male (37.5% vs. 46.9% vs. 60.1%; p < 0.001). They had a higher degree of dependence in daily tasks prior to admission (moderate-severe dependency in 10.8% vs. 14.1% vs. 17%; p < 0.001), arterial hypertension (36.9% vs. 45.2% vs. 52.8%; p < 0.001), dyslipidemia (28.4% vs. 37% vs. 40.6%; p < 0.001), diabetes mellitus (11.9% vs. 17.1% vs. 20.5%; p < 0.001), ischemic heart disease (3.7% vs. 6.5% vs. 8.4%; p < 0.001), heart failure (3.4% vs. 5.2% vs. 7.6%; p < 0.001), liver disease (1.1% vs. 3% vs. 3.9%; p = 0.002), chronic renal failure (2.3% vs. 3.6% vs. 6.7%; p < 0.001), cancer (6.5% vs. 7.2% vs. 11.1%; p < 0.001), and chronic obstructive pulmonary disease (5.7% vs. 5.4% vs. 7.1%; p < 0.001). They presented more frequently with fever, dyspnea, and vomiting. These patients more frequently required high flow nasal cannula (3.1% vs. 4.4% vs. 9.7%; p < 0.001), non-invasive mechanical ventilation (0.9% vs. 3% vs. 6.3%; p < 0.001), invasive mechanical ventilation (0.6% vs. 2.7% vs. 8.7%; p < 0.001), and ICU admission (0.9% vs. 3.6% vs. 10.6%; p < 0.001), and had a higher percentage of in-hospital mortality (2.3% vs. 6.2% vs. 23.9%; p < 0.001). The three risk categories proved to be an independent risk factor in multivariate analyses. (4) Conclusion: The present study identifies three risk categories for the requirement of high flow nasal cannula, mechanical ventilation, ICU admission, and in-hospital mortality based on lymphopenia and inflammatory parameters.

20.
PLoS One ; 16(5): e0251340, 2021.
Article in English | MEDLINE | ID: covidwho-1223800

ABSTRACT

BACKGROUND: Most patients with COVID-19 receive antibiotics despite the fact that bacterial co-infections are rare. This can lead to increased complications, including antibacterial resistance. We aim to analyze risk factors for inappropriate antibiotic prescription in these patients and describe possible complications arising from their use. METHODS: The SEMI-COVID-19 Registry is a multicenter, retrospective patient cohort. Patients with antibiotic were divided into two groups according to appropriate or inappropriate prescription, depending on whether the patient fulfill any criteria for its use. Comparison was made by means of multilevel logistic regression analysis. Possible complications of antibiotic use were also identified. RESULTS: Out of 13,932 patients, 3047 (21.6%) were prescribed no antibiotics, 6116 (43.9%) were appropriately prescribed antibiotics, and 4769 (34.2%) were inappropriately prescribed antibiotics. The following were independent factors of inappropriate prescription: February-March 2020 admission (OR 1.54, 95%CI 1.18-2.00), age (OR 0.98, 95%CI 0.97-0.99), absence of comorbidity (OR 1.43, 95%CI 1.05-1.94), dry cough (OR 2.51, 95%CI 1.94-3.26), fever (OR 1.33, 95%CI 1.13-1.56), dyspnea (OR 1.31, 95%CI 1.04-1.69), flu-like symptoms (OR 2.70, 95%CI 1.75-4.17), and elevated C-reactive protein levels (OR 1.01 for each mg/L increase, 95% CI 1.00-1.01). Adverse drug reactions were more frequent in patients who received ANTIBIOTIC (4.9% vs 2.7%, p < .001). CONCLUSION: The inappropriate use of antibiotics was very frequent in COVID-19 patients and entailed an increased risk of adverse reactions. It is crucial to define criteria for their use in these patients. Knowledge of the factors associated with inappropriate prescribing can be helpful.


Subject(s)
Anti-Bacterial Agents/adverse effects , COVID-19/pathology , Inappropriate Prescribing/adverse effects , Acute Kidney Injury/etiology , Aged , Anti-Bacterial Agents/administration & dosage , C-Reactive Protein/analysis , COVID-19/complications , COVID-19/virology , Comorbidity , Cough/etiology , Dyspnea/etiology , Female , Fever/etiology , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Registries , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL